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We examine a hydrodynamic scheme for supersonic  flow of a two-phase medium past a s lender  body. This theory 
has pract ical  value in calculat ions of a i r -b rea th ing  jet engine inlets  (when the gas contains liquid or solid part icles) ;  
in calculat ions of the flight of bodies in dusty gas media;  for pulp or sands torm flow past  obstacles;  in several  
questions of a tomized-propel lant  burning; and in the decomposit ion of the thermal  protect ive spacecraft  coatings. The 
l inear ized  problem of two-phase (supersonic,  barotropic) flow past bodies is solved using [1] as the basis .  

The study showed that the problem does not have a solution if the surface of the given body forms  s t reaml ines  of 
both phases. This fact is physically quite explainable since in the theory in question the p r e s s u r e  field is the same in 
both phases. Therefore ,  while one component flows about the body the other flow should not reach the body at all, i .e. ,  
the components separate  and near  the body there  appears a region in which only the motion of one ("light" or "heavy 'T) 
phase is significant. 

We note that a model was proposed in [2] for two-fluid hydrodynamics of a fluidized bed in which the existence of 
a l iquid-phase region near  the wall is also shown. A l ight- f lu id-phase  region near  the wall was noted in [3-7j in 
studies of nozzle par t icula te  gas -pa r t i c l e  flows, and so on. 

The problem simplif ies  if the phase  (component) interface is assumed and the corresponding profi le  is found 
( inverse problem). In the following we presen t  an analytic solution of this (inverse) problem. The resul t s  obtained also 
make it possible  to demonst ra te  some quali tative charac te r i s t i c s  of the flow in question. 

Fig. i 

We examine flow of a two-phase medium with ini t ial  velocity U 0 past a profile. We assume that the phases are  
mutually. "nonwettable. " Two flow types are  poss ib le :  expansive and compressive.  In the case of expansive flow there  
is complete separat ion of the light phase from the heavy phase above the surface of the profile. The fo rmer  will flow 
about the body while the la t te r  will t ravel  in the two-phase flow region, whose boundary will be some s t reaml ine  of the 
heavy phase,  t e rmed  the phase in terface  (Fig. 1, dashed line). For  compress ive  flow the motion pat tern  will be 
analogous to that for expansive flow except that the roles  of the heavy and light phases are interchanged. 

In descr ib ing the two-component sys tem we usual ly s tar t  f rom the idea of the components as in terpenet ra t ing  and 
in teract ing continuous media. The corresponding equations of motion are  discussed in [1]. In the plane steady flow case 
they have the form 
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The continuity equation is 

0 u 0 
(P~ ~) + -~u (p~v~) = o 

We supplement system (i) and (2) with the equations of state of the phases 

(2) 

and the re la t ion  

p = 1~ (o,,~) (3) 

2L + ~ = I (n = 1,2) (4) 
PI i  ~" 

Here p is p r e s su re ,  Un and v n are veloci t ies ,  Pni and Pn are  the t rue and reduced densi t ies  of the n- th  
component, Kin is the in terac t ion  function of the n- th  component with the j - th  component (in order  to r ep resen t  the 
solution in analytic form the function Kjn is assumed to be a constant quantity k). 

We apply the smal l  per turbat ion  method to (1)-(4), i .e. ,  we examine the l inear ized  theory of flow past bodies. 
Then (1)-(4) in the case of i r rota t ional  potential flow with cer ta in  s implif icat ions take the form 

p0 p00 

( ~u0 u.)  (5) M1 = ~ , Mo = 

P~o plo ~ k 
PlorPlx -- ~ P~o~'~x = -- ~ (q~1 -- qD~) (6) 

Here go i and ~o~ are the velocity potentials; Mi and M z are the Mach numbers; P0, P00 and Pl0, Pz0 are the initial 
values of the true and reduced densities of the media. Let us now formulate the boundary conditions. 

The equations of the two-component sys tem are  not valid near  the wall. As we indicated in the beginning of the 
ar t ic le ,  for expansive flow the light medium occupies the region near  the wall. Therefore  the l imi t  of the action of the 
heavy phase will be the phase interface,  on which the boundary conditions must  be specified. 

Let the phase in terface  be given by a straight l ine forming the angle fi with the x-axis .  It is obvious that this l ine 
is a s t reaml ine  of the more  dense (heavy) medium,  i .e . ,  

%~(x, y) = --  U0~ for v = ~  (7) 

and the light medium plays  the dominant role in the region near  the wall; therefore  the condition of s ingle-phase  flow 
past the profile is sat isf ied as the surface of the body is approached. Additionally, the veloci t ies  of the two-phase 
sys tem at infinity are bounded and on the charac te r i s t ic  l ines  

~ = ~ =  0 (8) 

Thus, the model under  d iscuss ion  makes it possible  to pose the following boundary conditions : on the interphase 
surface,  continuity of the normal  and tangential  components of the velocity of the l ight (or heavy} phase and the 
condition of flow of the heavy (or light) phase past this surfaee; at the solid boundary,  the condition of flow of the light 
(or heavy) phase medium past the boundary. We apply the Laplace t r ans fo rm [8] to sys tem (5), (6). Then the solutions 
of (5) and (6), satisfying boundary conditions (7) and (8), have the form 
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H e r e  I0(cx) i s  t h e  m o d i f i e d  B e s s e l  func t ion .  
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Fig.  2 

To  d e t e r m i n e  t w o - p h a s e  f low i n t e r a c t i o n  w i t h  a s l e n d e r  body  we m u s t  e x a m i n e  t h e  m o t i o n  of one  p h a s e  in t he  
r e g i o n  a d j a c e n t  to  t he  s u r f a c e  of t h e  body.  It i s  obv ious  t h a t  we h a v e  t he  e q u a t i o n  f o r  t he  d i s t u r b e d  f low v e l o c i t y  

, 
p o t e n t i a l  (P2, 

~xx* = O)o2q)~vu, (r ~ = M~_~.~_T.t ) 1  (i0) 

w h i c h  h a s  a s o l u t i o n  of t he  f o r m  

-k  T o  -t- T • = z - -  y/coo / 
x _  

H e r e  f ( x )  and  F(x) a r e  f u n c t i o n s  w h i c h  a r e  k n o w n  (as  a r e s u l t  of the  cond i t i on  of c o n t i n u i t y  of t h e  v e l e c i t y  of t h e  
l i gh t  c o m p o n e n t  on t h e  p h a s e  i n t e r f a c e )  f r o m  t he  s o l u t i o n  in  t he  t w o - c o m p o n e n t - m e d i u m  f low r eg ion .  As we no ted  
p r e v i o u s l y ,  a t  t he  s u r f a c e  of the  s l e n d e r  body  t he  fo l lowing  f low c o n d i t i o n  i s  s a t i s f i e d :  

,p,~* (x, ~o) = - U&o (x) 

Here ~0(x) is the inclination of the tangents to the profile elements. 

S u b s t i t u t i n g  (11) in to  (12), we o b t a i n  t he  f o r m u l a  f o r  f i n d i n g  t he  body s h a p e ,  w h i c h  is  not  p r e s e n t e d  b e c a u s e  of i t s  

l eng th .  The  p r e s s u r e  c o e f f i c i e n t  is  

C p *  - - -  
p - -  p ~  

1/: FoU~ 

• a,~ e r~ Ow(t)  dt 
o 

(13) 

H e r e  m x  = ~?, m y  = ~ a r e  d i m e n s i o n l e s s  v a r i a b l e s .  

We no te  t h a t  in  t h e  a b s e n c e  of one of t he  m e d i a  t he  P r a n d t l - A e k e r e t  f o r m u l a  [9] fo l lows  f r o m  (13). 
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The c o m p r e s s i v e  flow is s tudied s im i l a r l y .  Concrete  calculat ions  in the case  

M1 ~ t.85, M 2 ~ t.5, P0 ~ 0.12i kg .  secZ/m 4 
poo = o.075 k g .  see2/m 4, elo = 0.i089 kg .  sec2 /m 4 

= o.o875, K = 50 k g - s e c / m  4 

show that the fo rm of the s l ender  body sur face  is  a wedgel ike  prof i le  (shaded r eg ion  in Fig .  1), the p r e s s u r e  
coefficient  curve of the two-phase  medium (solid curves  in Fig. 2) is  loca ted  above that for  the s ing le -phase  medium 
(dashed c u r v e s i n  Fig .  2), and in the case  of expansive  (compress ive)  flow the light component of the medium acqui res  
h igher  ( l ower )ve loc i ty  than the heavy component. In F ig .  2 the upper two (solid and dashed) cu rves  apply to 
c o m p r e s s i v e  flow, the lower  apply to expansive flow. 

R E F E R E N C E S  

1. Kh. A. Rakhmatul in ,  "Fundamenta l s  of the gasdynamics  of in te rpene t ra t ing  flows of c o m p r e s s i b l e  m e d i a , "  
PMM, vol. 20, no. 2, 1956. 

2. Yu. A. Buevich,  "Two-f luid hydrodynamics  of a f lu idized b e d , "  Izv. AN SSSR, MZhG [Fluid Dynamics] ,  
vol. 1, no. 4, 1966. 

3. J. R. Kl iegel ,  " G a s p a r t i c l e n o z z l e f l o w s , "  in:  Sympos. ( I n t e r n a t . ) C o m b .  9- th,  Acad. P r e s s ,  New York,  
1963. 

4. Y. R. Kl iegel  and G. R. Nickerson,  "Flow of g a s - p a r t i c l e  mix tu re s  in ax ia l ly  s y m m e t r i c  n o z z l e s , "  in:  
Detonation and T w o - P h a s e  Flow, Acad. P r e s s ,  New York,  1962. 

5. J. D. Hoffman and H. D. Thompson,  "A genera l  method for  de te rmin ing  opt imum thrus t  nozzle  contour for  
g a s - p a r t i c l e  f l ows , "  AIAA ]caper,  no. 66-538 ,  1966. 

6. L. P. Vereshchaka ,  S. N. Galyun, A. N. Kra iko ,  and L. E. Sternin,  "Resul ts  of m e t h o d - o f - c h a r a c t e r i s t i c s  
ca lcula t ion of g a s - p a r t i c l e  flow in a x i s y m m e t r i c  nozz les  and compar i son  with r e s u l t s  of the one -d imens iona l  
approx ima t ion , "  Izv. AN SSSR, MZhG [Fluid Dynamics] ,  Vol. 3, No. 3, pp. 133-138,  1968. 

7. A. N. Kra iko  and A. A. Osipov, "The solut ion of va r ia t iona l  p rob l ems  of supersonic  gas flows with fo re ign  
p a r t i c l e s , "  PMM, vol. 32, no. 4, pp. 596-605,  1968. 

8. V. A. Ditkin and P. I. Kuznetsov,  Handbook on Operat ional  Calculus [in Russian] Gos tekh teore t i zda t ,  
Moscow-Leningrad ,  1951. 

9. N. E. Kochin, I. A. Kibe l ' ,  and N. V. Roze, Theore t i ca l  Hydromechanics ,  Pa r t  2 [in Russ ian] ,  F i zma tg i z ,  
Moscow, 1963. 

5 March  1969 

M os cow-Tashken t  

550 


