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We examine a hydrodynamic scheme for supersonic flow of a two-phase medium past a slender body. This theory
has practical value in calculations of air-breathing jet engine inlets (when the gas contains liquid or solid particles);
in calculations of the flight of bodies in dusty gas media; for pulp or sandstorm flow past obstacles; in several
questions of atomized-propellant burning; and in the decomposition of the thermal protective spacecraft coatings. The
linearized problem of two-phase (supersonic, barotropic) flow past bodies is solved using [1] as the basis.

The study showed that the problem does not have a solution if the surface of the given body forms streamlines of
both phases. This fact is physically quite explainable since in the theory in question the pressure field is the same in
both phases. Therefore, while one component flows about the body the other flow should not reach the body at all, i.e.,
the components separate and near the body there appears a region in which only the motion of one ("light" or "heavy")
phase is significant.

We note that a model was proposed in [2] for two-fluid hydrodynamics of a fluidized bed in which the existence of
a liquid-phase region near the wall is also shown. A light-fluid~phase region near the wall was noted in [3-7] in
studies of nozzle particulate gas-particle flows, and so on.

The problem simplifies if the phase. (component) interface is assumed and the corresponding profile is found
(inverse problem). In the following we present an analytic solution of this (inverse) problem. The results obtained also
make it possible to demonstrate some qualitative characteristics of the flow in question.
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Fig. 1

We examine flow of a two-phase medium with initial velocity U, past a profile. We assume that the phases are
mutually "nonwettable. " Two flow types are possible: expansive and compressive. In the case of expansive flow there
is complete separation of the light phase from the heavy phase above the surface of the profile. The former will flow
about the body while the latter will travel in the two-phase flow region, whose boundary will be some streamline of the
heavy phase, termed the phase interface (Fig. 1, dashed line). For compressive flow the motion pattern will be
analogous to that for expansive flow except that the roles of the heavy and light phases are interchanged.

In describing the two-component system we usually start from the idea of the components as interpenetrating and
interacting continuous media. The corresponding equations of motion are discussed in [1]. In the plane steady flow case
they have the form
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The continuity equation is
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We supplement system (1) and (2) with the equations of state of the phases
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and the relation
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Here p is pressure, up and vy are velocities, py; and o, are the true and reduced densities of the n~-th
component, an is the interaction function of the n-th component with the j-th component (in order to represent the
solution in analytic form the function Kjy is assumed to be a constant quantity k).

We apply the small perturbation method to (1)~(4), i.e., we examine the linearized theory of flow past bodies.
Then (1)~(4) in the case of irrotational potential flow with certain simplifications take the form
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Here ¢; and ¢, are the velocity potentials; M; and M, are the Mach numbers; 0y, Poo and p1p, Py are the initial
values of the true and reduced densities of the media. Let us now formulate the boundary conditions.

The equations of the two-component system are not valid near the wall. As we indicated in the beginning of the
article, for expansive flow the light medium occupies the region near the wall, Therefore the 1imit of the action of the
heavy phase will be the phase interface, on which the boundary conditions must be specified.

Let the phase interface be given by a straight line forming the angle 8 with the x-axis. It is obvious that this line
is a streamline of the more dense (heavy) medium, i.e.,
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and the light medium plays the dominant role in the region near the wall; therefore the condition of single-phase flow
past the profile is satisfied as the surface of the body is approached. Additionally, the velocities of the two-phase
system at infinity are bounded and on the characteristic lines

P =@, =0 ‘ (8)

Thus, the model under discussion makes it possible to pose the following boundary conditions: on the interphase
surface, continuity of the normal and tangential components of the velocity of the light (or heavy) phase and the
condition of flow of the heavy (or light) phase past this surface; at the solid boundary, the condition of flow of the light
(or heavy) phase medium past the boundary. We apply the Laplace transform [8] to system (5), (6). Then the solutions
of (5) and (8), satisfying boundary conditions (7) and (8), have the form
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Here Iy(cx) is the modified Bessel function.
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Fig. 2

To determine two-phase flow interaction with a slender body we must examine the motion of one phase in the
region adj a*cent to the surface of the body. It is obvious that we have the equation for the disturbed flow velocity
potential ¢,,
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which has a solution of the form
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Here f(x) and F(x) are functions which are known (as a result of the condition of continuity of the velocity of the
light component on the phase interface) from the solution in the two-component-medium flow region. As we noted
previously, at the surface of the slender body the following flow condition is satisfied:

Poy® (2, Vo) = — Uiy ()
Here By(x) is the inclination of the tangents to the profile elements.

Substituting (11) into (12), we obtain the formula for finding the body shape, which is not presented because of its
length. The pregsure coefficient is
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Here mx =1, my = £ are dimensionless variables.

We note that in the absence of one of the media the Prandtl-Ackeret formula [9] follows from (13).
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The compressive flow is studied similarly. Concrete calculations in the case

My = 1.85, M, = 1.5, p, = 0.121 kg - sec?/m*

oo = 0.075 kg + sec?/m?, p,, = 0.1089 kg « sec?/m*
B = 0.0875, K = 50 kg-sec/m*
show that the form of the slender body surface is a wedgelike profile (shaded region in Fig. 1), the pressure
coefficient curve of the two-phase medium (solid curves in Fig. 2) is located above that for the single-phase medium
(dashed curvesin Fig.2), and in the case of expansive (compressive) flow the light component of the medium acquires
higher (lower) velocity than the heavy component. In Fig. 2 the upper two (solid and dashed) curves apply to
compressive flow, the lower apply to expansive flow.
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